Phenotypic heterogeneity in modeling cancer evolution
نویسندگان
چکیده
The unwelcome evolution of malignancy during cancer progression emerges through a selection process in a complex heterogeneous population structure. In the present work, we investigate evolutionary dynamics in a phenotypically heterogeneous population of stem cells (SCs) and their associated progenitors. The fate of a malignant mutation is determined not only by overall stem cell and non-stem cell growth rates but also differentiation and dedifferentiation rates. We investigate the effect of such a complex population structure on the evolution of malignant mutations. We derive exactly calculated results for the fixation probability of a mutant arising in each of the subpopulations. The exactly calculated results are in almost perfect agreement with the numerical simulations. Moreover, a condition for evolutionary advantage of a mutant cell versus the wild type population is given in the present study. We also show that microenvironment-induced plasticity in invading mutants leads to more aggressive mutants with higher fixation probability. Our model predicts that decreasing polarity between stem and non-stem cells' turnover would raise the survivability of non-plastic mutants; while it would suppress the development of malignancy for plastic mutants. The derived results are novel and general with potential applications in nature; we discuss our model in the context of colorectal/intestinal cancer (at the epithelium). However, the model clearly needs to be validated through appropriate experimental data. This novel mathematical framework can be applied more generally to a variety of problems concerning selection in heterogeneous populations, in other contexts such as population genetics, and ecology.
منابع مشابه
Human Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملInference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity.
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, ...
متن کاملPhenotypic heterogeneity promotes adaptive evolution
Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-t...
متن کاملToward understanding of the role of reversibility of phenotypic switching in the evolution of resistance to therapy
Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving be...
متن کاملEffects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors
Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of adaptation, or evolution, in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of cell adaptation to local conditions? How do anti-cancer therapies affect the outcome of cell competition for nut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017